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ABSTRACT

Active sonar classification of submerged elastic structures becomes
increasingly difficuiL when the structure is close to the bottom or
surface of the sea. The backscattering cross-section (BSCS) of any
target, which is relatively simpler to determine in deep waters, away
from boundaries, becomes substantially distorted as the structure
approaches either one of these environmental boundaries. Near these
interfaces the classification methodology based on echo resonances that
we have used in the past (viz., Appl. Mechanics Reviews 43, 171-208,
(1990)) can no longer be used. By means of the examples of a spherical.
shell and an elastic solid sphere insonified by plane waves, we study
the above mentioned degradation in BSCS in order to assess how distant
the structure should be from these boundaries before the resonance
features become discernible again in the echoes, and object recognition
is again possible. Our approach is based on the method of images for
the construction of the appropriate Green's functions, combined with a
very involved two-body scattering formulation that determines thecombined T-Matrix of two insonified objects, when the T-Matrix of each
individual object is known. The methcd is extended to the time domain.

We present form-functions in the frequency domain, as well as late-time
responses in the time domain for both sphere and shell as they approach
the mentioned boundaries. Boundary effects seem to be confined to a
"Ckin layer" bounded by R•4. Within this layer the resonance features
fade and are washed out in both the frequency and time domains. The
formulation uses translation operators borrowed from atomic physLcs.

I. THEORETICAL APPROACH

The scattering of a plane c.w. scalar wavefield *I(-r) by an object
of surface S in an unbounded acoustic medium can be described by means
of the T-Matrix method.cl) A brief review follows. The total wavefield
is always the sum of the incident 1pJ(z) and the scattered ,P().Huygens principle states that(2):

* ffPtIz') �1. ! f�fAu"o)-• Ob(•o)g(kJ9- 4•)• 4 d)
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never f is outside S (top formula) or F is inside S (bottom). The
x=enslonal Green's function for an unbounded space is(3):

Ikj- ') =exp[iklf-!/I]/4njf-f?', (2)

ich can be expanded in a complete set of solutions of Helmholtz
• ation (V+k 2 ) +(f)=0., which are, in normalized form:

ere e,={1(mO;f(r,O,4 ), and e, o correspond to even or odd indices.(4)

.be zesired expansion is:

S (k j I Eý( t (4)

We note that Re*,(ri) are like the *r,(r-) but with the h,(1)(kr) replaced
)" by their regular parts, j,(kr). [m=O,1,2,...n] The T-Matrix approach(')
_ gi-es the coefficients of the scattered field in terms of those of the

rir:ident, when both are expanded in terms of the above solutions in
-7.'ation (3). The scattered field admits the expansion:

-un ,,•=Zf~~D (6)

• n

and the incident field, analogously, the expansion:

n

The eleuents T., of the T-matrix are found from

It has been shown(1'5) that these elements are given by

T- (Re Q)Q' (9)

SPI rVol. 1700 Automac Object Recognit;on II(1992)127



where the elements of the auxiliary matrix Q are given by

'- Re V, CF) (10)
S

whenever the Neumann B.C. is satisfied on S i.e., f =0, or given by

whenever the Dirichlet B.C. is satisfied on S, i.e., 4(f):0. If the
object has spherical shape, the integral in Equations (10) and (11) can
be performed exactly, in closed form, and the T-Matrix elements in
Equation (9) can be analytically determined. For other shapes, the
integrations over S must be carried out numerically and the T-Matrix
elements afe then numerically determined. Once the scattered field is
determined, the cross section is:

___ f~> ~ r~l ~ 21 ~ t~ 1.2)

in normalized form. All the above is for a single scatterer. If there
are two scatterers of surfaces S, and S, in the medium, then the analysis
becomes more co=plicated since it requires two shifts of origins. These
origin shifts, so common in qolid state physics, are an immediate clue.
that one is eventually going Jo deal with addition theorems for (vector)
spherical harmonics,(B) and the machinery originally developed in atomic
physics to handle the coupling of two angular momenta vectors(9-'5 ) (i.e.,
Clebsch-Gordan coefficients and/or Wigner 3-j symbols). Equation (1)
still holds, but the integration is now over S. + $2, and its upper
result is for F outside S1 and S21 while the lower one is for f inside *

SI or S2 . Let 0 be an origin outside both scatterers, and let 01, 0, be
origins inside S1 and S., respectively. The incident field can still be
expanded by Equation (7), where f is now the radius vector from 0,
provided that *1 contains no sources inside a sphere centered at 0 and
containing both S and S. Expansions of 4, and of g(kIF-F') are also
required about both 01 and 02. Let X 1,J2 be position vectors of 01, 02,
relative to 0. Let fzfz" (or f 2,f21") be position vectors of a point
interior to S1 , or of a point of the boundary of S,, (or of $2)
respectively, relative to 01 (or to 02). Let IZ1z• be position vectors
of a boundary point of S,, S•, relative to 0. The two expansions
equivalent to Equation (4) area S

'4(1L--T:") = -& E:(13)e

(14)

O
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where !=f1÷g,. It follows that the translation properties(81 3) of Re
and 4r, are required to handle these origin shifts. Those of Re •
are diven by:

The matrix R., (.E) takes care of the translation and it is borrowed from
elsewhere(a); it is given here in terms of another matrix r referring to
a general translation 9- (a, l, ), viz

F+• i + t•,,•, (a,.1) ,tC-n+•tS)Q] Co-* a-')

where t is given by:

n+n I
• ,(a,ij)= I (-1)U**l(..n..k)/ 2

(2k+l)jk(ka)PkU'm'(cosn)*
k=jn-nl I

(2n+l)(2n'+ll[k-(m-n,)]! n n' k n n' k

[k+(m-m')]! 0 0 0 M -m -(M-m')

and (J1 J 2 J3  is the Wigner 3-j symbol defined")n as follows:

(.7, .:" ,I' ,,,...

' R-I)n

SPIE VOl 3 700 Automazlk Objed• Rccognizi,'n iU (I 992) 129



The particular Wigner 3-j symbol ( • ' ), vanishes if J = n+n'+k is

odd. If J = even then

n n'k (-11J/2 ')!(J-2k)! (J/2)! (19)

(J+))(! (nJ-n) ! (0(0-n)) !-(2) J-k)

The form of the matrix R(a) given in (16) - (19) is quite general since
it refers to a general translation S-(a,¶],*). For the particular
case(5.8 ) of a translation "d" along the z-axis, it reduces to

P. (± ).,, ~ * 20)=0

* ~~~ ~ 1 1, 01t 07) a,~ ~~,o

which still contains the 3-j Wigner symbols defined above. We still
require the translation properties of 4,, which is of the form

where the matrix o., takes care of the translation of origins. It turns
out that om, is exactly the same as the matrix R., except that the Bessel
function Jk(ka) appearing in Equation (17) is now to be replaced by the
Hankel function h5

1 (ka). With that single change, Equations (16)-(20),
remain as before also for om, (-ai+a 2 )•

If Equations (7), (13), (14), (15), and (21) are substituted into
Equation (1), the result is an expression in which the coefficients of
Rein(f,) can be set equal, and this yields:

R &('1 )=iola+io (-a+a.m) ReQOa2
, (22)

where ff-f1+a- and the Q1 (iý1,2) are given by Equations (10) and (11)
depending on the type of B.C. used, and the integration is over S,. The
same procedure for F-r 2 +a92 in S, yields the analogous result,

Pi.T" Let j, and 1., be two angular momenta vectors of magnitude ), and?,.
The sun of these momenta is: i7- ., - j•, of magnitude 3. If
,,m-, (with n are the cigenvalues of two suitable elgenfunctions

X (j7no,),, X (.7,) respectively associated with the , then the

eigenfunction of J, in terms of those of 7, and j. is:
X(Jn} = C(IJ,2•; M~m•Xj~mt) X021:0)

The coefficients ale the Clebsh-Gordan coefficients which are
proportional to the Wigrer 3-j symbols. If J, and .- were not coupled,
each precessing independently about J, then the eigenfunction of i in
terms of those of J7, and j, would be: X(j,17,)X(j•'r.)

301 SPIE Vol 1700 AutomtIeic Object Recosniton it (1992)



R'(X')&=i Q2a2 + io(iU2 + S;) ReQIa1  (23)

-.here the a! are the expansion coefficients over each S,. If we now
ý:nsider the scattered field expansion in Equation (6) together with
-rTiation (13) and use !j=fe'+A; (i=1,2), we find,

:R (,)Re Qlal-iR 2)ReQo2 a2 . (24)

Solving equations (22) and (23) for a1 and a2 in terms of 9 and
-uzstitution into equation (24) yields the total T-Matrix for the two
zcatterers, T12, which is

= ~ (25)
t,ki• [k

. terms of the translation matrix R in equations (16) - (19), where a
- obtained from R by replacing j. by h,' 1 ), and in terms of the T-

")trices of the individual scatterers. For two identical spherical
-zatterers separated a distance 2d = 2d P- along the z-axis, the two T-
natrices are the same and the result simplifies to:

~'~ t(3t 2 V1[A = -'Y' 42 CT'. (26)

",:here

(d) =R(J) T[!-a (-23' To (23) T71- [1+ (-2d) TR(2d) I R(-'•) (27)

The simplest expression for this result is:

7ý2=R(d) [TD.M]R(-a)+R(-a) [(_M.]R(+),(
. (28)

where

D±=[il-a(=2d3Tod(+2d)-I1 (29)

_; [1. (,:2d) TR(,2d) 1 ,(30)

where R is as given in (20), and a is just like it with the j. replaced
by h,('1 . The Wigner 3-j symbols are as defined in equations (18) and
(19). It should be remarked that both R and a are orthogonal, viz.,

R*()=R (-a) and ot(a)=a(-aa), (31)

and that the following addition theorem holds:

c(&R) = a(R')R(a-) = R(a)o(R') (aR). (32)
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For an elasti object in a fluid,( 16 1, the (single-scatterer) T-matrix is
not the one given by equation (9) and either (10) or (11), but rather by

T=-Re[QR-P] (QR'zPJ"1 , (33)

where the matrix Q a QR' 1P now plays the role of the old matrix Q in the
acoustic case. The matrices P, R, Q required here to construct 0, and
ultimately T are given elsewhere.16-) For the case of an elastic shell
in a fluid, the pertinent T matrix is

where M a R, + R T2 + i TV, and the various auxiliary matrices contained
in this expression needed to construct T have been given elsewhere('7 ,18 ).
Various other T-matrices have been constructed for elastic inclusions in
elastic media,( 1 9) multilayered scatterers,(20,Z) and others.(2") They can
all be used in conjunction with the two-scatterer fcrmulation given
above.

II. AN ELASTIC STRUCTURE HEAR THE SEA SURFACE

We consider an elastic sphere (WC) and an elastic spherical shell
near the sea surface being insonified from below by a plane c.w.
acoustic wave. We use the method of images and assume the sphere is a
distance d below the sea surface, and its virtual image is a distance d
above it. We can use the methodology described above for two
scatterers. This methodology will make use of the T-Matrix in equation
(33) for the elastic sphere, and in equation (34) for the elastic shell.
The spherical geometry is used for simplicity since the T-Matrix method
could handle almost any arbitrary shell/solid shape. The method of
images takes care of the type of boundary one has in between the sphere
and its image. If the boundary is rigid - a good first approximation
for a flat ocean bottom - the Green's functions of the object and its
image are added, which is reflected in the sum of the two terms for the
T12 - matrix in equation (26). If the boundary is soft (i.e., Dirichlet
B.C.), then we should take the difference of the two terms in equation
(26). we will show calculations below for both these cases, although
the most important one, and the one depicted in Figure 1, is the one in
which the intermediate boundary is a pressure release surface, such as
that of the sea.

All our frequency-domain calculations will produce moduli of form
functions Ifal (c.f., equation (12)). These will yield backscattering
cross sections after squaring. All our time domain (r a ct/a)
calculations are obtained by means of! .21):

rPSC(r) = ~f(~tcx~~d.(35)
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,here G(x) is the spectrum (i.e., the Fourier transform) of whatever
.ncident pulse is used.(25 ) In the case of very broad incident spectra,
say, G(x)- 1, the time response approximates the inverse Fourier
transform of f.(x), which is the "impulse response" of the scatterer,
wnich we plot below.

I:I. NUMERICAL RESULTS

Numerous calculations of form-functions of spherical shells in
L-bounded media have been found by us in earlier work.1 26) We are here
concerned with a WC solid sphere and a thin spherical aluminum shell,
rear the boundary shown in Figure 1. If the separating boundary is
113iq we add the two terms in equation (26) as discussed above. If it
is pressure-release, we will subtract those two terms. Figure 2 showsthe form-function of an elastic (WC) sphere in water in the band:

2_kaslO, at various distances from a bounding rigid interface measured
ty the quantity R which is proportional to the distance to the boundary.
There are two observable resonance features near 7 and 9 superimposed on
srooth rigid (RST) background, as one would expect of a WC-sphere,
These features are associated with the Rayleigh (R) and the first of the
F hispering Gallery (WG) modes. As the sphere approaches the boundary
(i.e., R=4, center; and R=2, bottom) the resonance peaks remain
essertially at the same places, but they become broader and harder to
iistinguish from the level of a rising background. Thus, proximity to
a rigid boundary tends to wash-out the resonances. Figure 3 is the same
as Figure 2 but now the boundary is a soft, or pressure release,
surface. As the WC sphere approaches the soft boundary (R=4, center;
P"=2, bottom) tha pattern becomes considerably more distorted than in
- gure 2 for the rigid boundary. The dips seen in the top plot at 7 and
9 now become peaks barely rising above the newly distorted backgrounds.
The background gains in internal structure with proximity to the soft
interface, but the resonances are also washed out, even more than when
the interface was rigid. Figure 4 shows the late-time response (i.e.,
50Tsct/a•200) as the WC sphere approaches a pressure-release boundary.
These time domain calculations are performed by means of equation (33)
and the corresponding form-function. As the sphere gets closer to the
soft boundary (viz., center, R=4; bottom, R=2), the wave-packet
structare of the response fades away, although a strong feature at T°170
seems to remain always present. The amplitude of the displayed
oscillations are about 10 times weaker than if the boundary had been
rigid -- although we do not show that case here. Again, proximity to the
boundary, particularly a soft one, washes out the significant features
In the tine-response, even when the boundary is an ideal, perfectly flat
one. Figures 5 and 6 deal with a thin spherical aluminum shell
(h/a=0.l%) in water, near a soft, or pressure release, boundary. Figure

5 (top) gives the form-function for the shell in a boundless medium'18),
as one would have found it away from boundaries. This pattern is
recovered in the presence ot a pressure-release boundary if the distance
of the shell from the boundary exceeds R-8 (i.e., 8 diameters away). As
the shell approaches the soft boundary (i.e., R=4, center; R=2, bottom)
its form-function becomes appreciably distorted. The resonance features
at 4.2 and 8.3 persist, but the first one splits into two, while che
backgrovnds seem to decrease at high-frequencies. Figure 6 shows the
late-timn response (viz., 50STact/a<200) of the same aluminum spherical
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FIG. 1. The geometry of the object,
its image and the separating FIG. 2. Form function of a solia
boundary. All pertinent vectors (WC) sphere approaching a rigid
are shown. boundary. The sphere is very far

away (R=-) on top, and becomes
closer (R=4, center; R=2, bottom),
in the lower plots.

shell. The late-time response is doninated by the resonances of the
shell, particularly the ones within the band: 3_<ka_<10, as shown in
Figure 5. As the shell approaches the pressure-release interface (i.e.,
R=4, center; R=2, bottom) there are substantial changes in the time-
response. The amplitude of some of the later wave-packets increases
with proximity to the boundary, although, in general, the entire
response is weak, and much weaker than in the case of rigid interface.
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FIG. 3. Form-function of a solid PIG. :. Iate-time response from
(WC) sphere approaching a pressure. the WC sphere in Fig. 3 as it
release boundary. Again R=- (top); approaches a soft boundary under
R=4 (center) and R=2 (closest, the same conditions (-=ct/a).
bottom) .

IV. CONCLUSIONS

The resonance features present in the for-m- functions or
backscattering cross-sections (BECS) of submerged elastic objects charge
as these objects get close to environmental boundaries. In general, the
cross-sections and the temporal responses of elastic solid bodies and
elastic she'lls become distorted near boundaries, and take on values
quite different from their values in free-space or deep waters. The
present study quantitatively describes those differences and graphically
displays specific distortions for a given metal sphere and a specific
thin spherical shell at various distances from an idealized model of the
sea surface (or bottom). The approach used was the method of images
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FIG. S. Form-function of an FIG. 6. Late-time response from
aluminum spherical shell the spherical aluminum shell as
(h/a- ' %) approaching a soft it gets closer to a pressure
boundary. This is the shell release interface. This is the
counterpart of Fig. 3. shell counterpart of Fig. 4.

coubined with a two-body scattering formulation that determined the T-
matrix of two objects insonified by acoustic waves when the T-matrix of
each indiv" Jual object was either known or calculable. In our numerical
results we noticed the splitting of certain resonances ("bifurcations"?)
into two components as the structure approached the boundary. In
general, proximity to the sea surface tends to wash-out or smooth-out
the osci3lltory nature of the BSCS. That oscillatory natLLe is due to
resonances cf the object and is essential for target-recognition
purposes. In the time-domain, the boundary influence seems to be
confined to a "skin-layer," bounded by R:54. The free-space form-
functions (i.e., rigures 2,3, and 5 (tops)) in the absence of boundaries
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are recovered from the present general formulation when the objects are
atout 4-8 diameters a,'?y from the interface. Finally, and obviously,
ttcse distorting efforts in the BSCSs will make any target-recognition
sc.eme substantially less effective for scatterers that remain
S -n&efinitely near environmental boundaries. Fortunately, the previous
target-ID capabilities will be recovered at a few characteristic
distances (i.e., diameters) away from those interfaces.
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